
The Klein-Gordon (KG) equation is an important 
NLEE that arise in relativistic quantum mechanics 
and quantum field theory, which is also much 
important for the high energy particle physics and is 
used to model many types of phenomena, including 
the propagation of dislocations in crystals and the 
behavior of elementary particles. The most common 
generalization of the linear theory above is to add a 
scalar potential V(ϕ) to the equations of motion, 
where typically, V is a polynomial in ϕ of order 3 or 
more. Such a theory is sometimes said to be 
interacting, because the Euler-Lagrange equation is 
now nonlinear, implying a self-interaction. The 
action for the most general such theory is

The corresponding Euler-Lagrange equation of 

motion is                           . If we take

 

then we can easily derive the nonlinear KG equation
form the corresponding Euler-Lagrange equation of 
motion . There is an amount of paper [27-33], where 
the   various   types    of   nonlinear    KG    equations
are studied. Chowdhury and Biswas [32] studied the 
singular solitons and numerical analysis of the Phi-
four equation qtt

_k2 qxx = aq + bq3  that appears in 
relativistic quantum mechanics. The Phi-four 
equation is a special case of the Klein-Gordon equations
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1. Introduction

In the recent years, the exact solutions of nonlinear 
partial differential equations have been investigated 
by many researchers who are involved in nonlinear 
phenomena which exist in all fields including either 
the systematic works or engineering fields, such as, 
plasma physics, fluid mechanics, chemical physics, 
chemical kinematics, elastic media, optical fibers, 
solid state physics, biology, atmospheric and oceanic 
phenomena and so on. The research of traveling 
wave solutions of some nonlinear evolution 
equations (NLEEs) derived from such fields play an 
important role in the analysis of these phenomena. 
To obtain traveling wave solutions, many effective 
methods have been presented in the literature, such 
as, the exp(−ϕ(η)-expansion method [1,2], the 
(G'/G,1/G)-expansion method [3], the (G'/G)-
expansion method [4-10], the inverse scattering 
transform method [11], the Exp-function method 
[12,13], the Cole-Hopf transformation method [14], 
the Adomian decomposition method [15], the 
homotopy perturbation method [16], the Kudryashov 
method [17], the new approach of generalized 
(G'/G)-expansion method [18-20], the improved 
(G'/G)-expansion method [21], the tanh-function 
method [22], the tanh-coth method [23], the ansatz 
method [24], the novel (G'/G)-expansion method 
[25,26] and so on.
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that is studied with several forms of nonlinearity that 
includes quadratic nonlinearity, power law 
nonlinearity, as well as log law nonlinearity. Biswas 
et al. [33] also studied the solitons and conservation 
law of the KG equation with power law and log law 
nonlinearities. It is primarily the perturbation theory, 
numerical simulation, and integrability issues that 
have been addressed thus far in such models. If we 
set k = 1, a = α, b = - β, then the Phi-four equation 
can be reduced to the KG equation with cubic 
nonlinearity utt - uxx + αu + βu3 = 0 for one 
dimensional space time which is found in the 
literature [34,35].

The aim of this article is to explore a new class of 
exact travelling wave solutions to the KG equation 
by an ansatz method that appeared in recent time. In 
this method we consider a non-linear ordinary 
differential equation (ODE) as an auxiliary equation 
whose solutions are known [24]. The advantage of 
the proposed method over the existing method is that 
it provides new exact traveling wave solutions 
together with additional free parameters. The exact 
solutions have great values to unveil the inner 
structure of the physical phenomena. Apart from the 
physical significance, the close-form solutions of 
NLEEs help the numerical solvers to compare the 
correctness of their results and help them in the 
stability analysis. Algebraic manipulations of the 
proposed scheme are so simple that it does not need 
any software which is the main advantage of this 
method than the other existing methods.

The rest of the article is organized as follows: In 
Section 2, the description of the method is given. In 
Section 3, we apply this method to the NLEE pointed 
out above. The physical explanations and graphical 
representations of the obtained solutions are 
presented in Section 4. In Sections 5, we draw our 
conclusions.

2. Methodology
Let us consider a general nonlinear PDE in the form
                        F(u,ut,ux,uxx,utt,utx,...).               (1)
where u = u(x,t) is an unknown function, F is a 
polynomial in u(x,t) and its derivatives in which 
highest order derivatives and nonlinear terms are 
involved and the subscripts stand for the partial  
derivatives.  The main steps of this method are as 
follows:
Step 1: Combine the real variables x and t by a 
complex variable ζ as
u(x,t)=U(ζ), where ζ=x+ct
where c is the speed of the traveling wave. The 
traveling wave transformation (2) converts Eq. (1) 
into an ordinary differential equation (ODE) for U(ζ):

R(U,Ut, Utt, Uttt ... ....) = 0

where R is a polynomial of U and its derivatives and  
the superscripts indicate the ordinary derivatives with 
respect to ζ .

Step 2: Suppose the traveling wave solution of Eq. 
(3) can be expressed as follows: 

n
i=0 aiV

iU(ζ)=Σ

where (0  i  n) are constants to be determined, such 
that an   0 and V = V (ζ) satisfies the following 
ordinary differential equation:

where,  λ and µ are nonzero constants.

Eq. (5) gives the following solutions:

Case-I:  When λ < 0

Step 3: Substitute Eq. (4) into Eq. (3) with the help 
of (5) and then we account the function V = V (ζ). As 
a result of this substitution, we get a polynomial 
equation of V = V (ζ). Then we will equate all the 
coefficients of the like powers of V to zero. This 
procedure yields a system of algebraic equations. 
After solving the systems for a0,a1.....,c,λ,µ and 
substituting these values into Eq. (4) along with 
general solutions of Eq. (5) completes the 
determination of the solution of Eq. (1).

3. New Exact Solutions to the Klein-Gordon 
Equation

Let us consider the KG equation of the following 
form

utt-uxx+αu+βu3=0                                                    (8)

where, u (x. t) represents the particle wave profile at 
any varied instances and α,β are nonzero real 
constants.

If we combine x and t by a compound variable ς i.e. 
u (x. t)=U(ς), ς=x+ct, and differentiating u (x. t)  partially

where, ς0  is the integrating constant.

Case-II: When λ < 0

≥ ≥

(2)

(3)

(4)

(5)

(6)

(7)



M. K. H. Chowdhury et.al/Int. J. Integ. Sci. Tech. 2 (2016) 34-38	 36

with respect to x  and t  two times, that is, 
uxx=U"(ς),utt =c2U"(ς),  then the equation (8) reduces 
to the following nonlinear ODE:

(c2 - 1)U" + αU + βU3 = 0 

Assuming the solutions of equation (9) as equation 
(4) and by balancing higher order derivative term 
with non-linear term that appeared in eq.(9), we 
obtain n = 1. Thus eq. (4) becomes

U(ς) = ao + a1V

Substituting (10) in (9) by the help of (5), we get a 
polynomial equation of V and then equating the 
corresponding coefficients of like powers of V, we 
obtain the following algebraic system

4. Physical Explanations and Graphical 
Representations

In this section we will discuss the physical 
explanations and graphical representation of the 
above determined four families of the solutions.

The introduction of dispersion without introducing 
nonlinearity destroys the solitary wave as different 
Fourier harmonics start propagating at different 
group velocities. On the other hand, introducing 
nonlinearity without dispersion also prevents the 
formation of solitary waves, because the pulse 
energy is frequently pumped into higher frequency 
modes. Similarly to dispersion, dissipation can also 
give rise to solitary waves when combined with 
nonlinearity. A solitary wave is a wave which 
propagates without any temporal evolution in shape 
or size when viewed in the reference frame moving 
with the group velocity of the wave. The envelope of 
the wave has one global peak and decays far away 
from the peak. Solitary waves arise in many 
literatures, including the elevation of the surface of 
water, the intensity of light in optical fibers, the 
particle wave propagation in field theory, the 
elevation of surface in shallow water wave etc. 
However, if both dispersion and nonlinearity are 
present, solitary waves can be sustained. Similarly to 
dispersion, dissipation can also give rise to solitary 
waves when combined with nonlinearity. The KG 
equation incorporates two competing effects: (i) the 
nonlinear term represented by u3  that describe the 
translations of wave and (ii) the linear dispersion 
term represented by uxx that describes the spreads it 
out. If both dispersion and nonlinearity are present, 
solitary waves can be persistent. Hence it is more 
interesting to point out that the delicate balance 
between the nonlinearity effect of u3 and the 
dissipative effect of uxx give rise to solitons solitary 
waves, that after a fully interaction with others the 
solitons come back retaining their identities with the 
same speed and shape. A soliton is also a nonlinear 
solitary wave with the additional property that the 
wave retains its permanent structure, even after 
interacting with another soliton. For example, two 
solitons propagating in opposite directions 
effectively pass through each other without breaking. 
There are various types of solitary and periodic wave 
solutions that appeared from the analytical solutions 
to the NLEE by choosing appropriate values of the 
physical parameters. In this article, the solitary wave 
solutions originated from the explicit solutions to the 
KG equation for some special values of additional 
free parameters are given as follows:  
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Solving the algebraic system for ao, a1 and c, we obtain

By combining equations (2), (6), (7), (10) and (12), 
the KG equation has the following explicit solutions 
as follows:

Set-1:  When  λ < 0

Set-2:  When  λ < 0

These obtained solutions are very helpful to analyze 
the particle wave propagation in relativistic quantum 
mechanics and quantum field theory, which is also 
much important for the high energy particle physics. 
These solutions are also useful to describe the 
propagation of dislocations in crystals and the 
behavior of elementary particles.
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Fig. 3: Bell type solitary wave solution obtained 
from (15) with  

Solution (16) represents the solitary wave solution of 
double soliton type to the KG equation.  Fig. 4 below 
shows the double soliton type exact solitary wave 
solution of Eq. (16) with some fixed parametric 
values λ= 0.1, α=0.5, β = − 0.5, ς0= 0.5 and 

Fig. 4: Double soliton solution obtained from (16) 
with  

5. Conclusions

The ansatz method is successfully applied to 
establish the valuable explicit form traveling wave 
solutions to the famous KG equation. The 
performance of this method is reliable, convincing 
and can be used to other NLEEs in finding exact 
solutions. The method gives more general solutions 
which contain further arbitrary constants and the 
arbitrary constants imply that these solutions have 
rich local structures. The results revealed remarkable 
relations of solitary pattern solutions or solitons. 
Although the method has a lot of merit it has a few 
drawbacks, such as, sometimes the method gives 
solutions in disguised versions of known solutions 
that may be found by other methods. The obtained 
solutions can also be utilized to further analyze by 
physicists on varied instance.

Fig. 2 Bright and dark soliton of exact solution (14) 
with  

Solution (15) represents the exact bell type soliton 
solution to the Klein-Gordon (KG) equation. 
Solitons are very special kinds of solitary waves 
which described many physical phenomena in 
soliton physics. The soliton solution is a specially 
localized   solution,  hence u'(ζ),u"(ζ),u'"(ζ)      0 as  

ζ   ±∞, = x+ct. Solitons have a remarkable property-
it keeps its identity upon interacting with other 
solitons. Soliton solutions also give rise to particle-
like structures, such as magnetic monopoles etc. So, 
soliton are everywhere in the nature. Fig. 3 below 
show the exact solitary wave solution of bell type of 
Eq. (15) with some fixed parametric values λ= 0.5, α 
= −0.5,β = 0.5, ς0 = 0.5   and

Solution (13) represents the solitary wave solution of 
bright and dark soliton type to the KG equation. Fig. 
1 below shows the bright and dark soliton type exact 
solitary wave solution of Eq. (13) with some fixed 
parametric values λ= − 0.1, α = 0.5, β = − 0.1, 

ς0 = 0.5 and − 3   x, t   3.≥

≥ ≥

≥

≥ ≥− 3   x, t   3.

≥ ≥− 3   x, t   3.

≥ ≥− 3   x, t   3.

Fig. 1 Bright and dark soliton of exact solution (13) 
with − 3   x, t   3.  

Solution (14) also represents the solitary wave 
solution of bright and dark soliton type to the KG 
equation.  Fig. 2 below shows the bright and dark 
soliton type exact solution of Eq. (14) with some 
fixed parametric values λ= − 0.5, α = 0.01,β = − 0.1, 
ς0 = 0  and

≥ ≥− 3   x, t   3.

≥ ≥− 3   x,t   3.

≥ ≥− 3   x, t   3.
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